- Bạn vui lòng tham khảo Thỏa Thuận Sử Dụng của Thư Viện Số
Tài liệu Thư viện số
Danh mục TaiLieu.VN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5, chương này cung cấp cho học viên những nội dung về: phân lớp; bài toán phân lớp; học dựa trên các láng giềng gần nhất (Nearest neighbors learning); ma trận nhầm lẫn (Confusion matrix); giải thuật phân lớp k-NN;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
24 p stu 23/12/2023 27 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Bài toán phân lớp, Học dựa trên các láng giềng gần nhất, Nearest neighbors learning, Giải thuật phân lớp k-NN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 7: Học dựa trên láng giềng gần nhất (KNN)
Bài giảng Nhập môn Học máy và Khai phá dữ liệu - Chương 7: Học dựa trên láng giềng gần nhất (KNN). Chương này cung cấp cho học viên những nội dung về: học dựa trên các láng giềng gần nhất; giải thuật k-NN cho phân lớp; hàm tính khoảng cách; chuẩn hóa miền giá trị thuộc tính;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
23 p stu 19/06/2023 23 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Học dựa trên láng giềng gần nhất, K-nearest neighbors (k-NN), Hàm tính khoảng cách, Hàm khoảng cách Euclid
Đăng nhập
Bộ sưu tập nổi bật